Mixture models for bimodality?

Oikos kindly featured our latest paper.  See below!

Oikos Blog

Bimodality – the characteristic of a continuous variable having two distinct modes – is of widespread interest in data analysis. This is because, in some cases, we can use the presence or absence of bimodality to infer something about the underlying processes generating the distribution of a variable that we are interested in studying. In ecology, tests of bimodality have been used in many different contexts, such as to understand body size distributions, functional traits, and transitions among different ecosystem states. But a lack of evidence for bimodality has been reported in many studies. Our paper “Masting, mixtures and modes: are two models better than one?”, now shows that a widely-used statistical test of bimodality can fail to reject the null hypothesis that focal probability distributions are unimodal. We instead promote the use of mixture models as a theory oriented framework for testing hypotheses of bimodality.

Our interest in…

View original post 428 more words

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s